## Switching Controller Synthesis for Hybrid Systems Against STL Formulas

Han Su, Shenghua Feng, Sinong Zhan, Naijun Zhan







FM · Milan · September 2024



## Cyber-Physical Systems

"Cyber-Physical Systems (CPS) refers to a new generation of systems with integrated computational and physical capabilities ..."

— Radhakisan Baheti and Helen Gill : CPS. The Impact of Control Technology, 2011



## Cyber-Physical Systems

"Cyber-Physical Systems (CPS) refers to a new generation of systems with integrated computational and physical capabilities ..."

- Radhakisan Baheti and Helen Gill: CPS. The Impact of Control Technology, 2011



**Automobiles** 



**Avionics** 



**Medical Devices** 

## Cyber-Physical Systems

"Cyber-Physical Systems (CPS) refers to a new generation of systems with integrated computational and physical capabilities ..."

— Radhakisan Baheti and Helen Gill: CPS. The Impact of Control Technology, 2011



**Automobiles** 



**Avionics** 



Medical Devices

**Question:** Can we design a Cyber-Physical System to meet a given specification?









- Feedback Controller
- Switching Controller
- Reset Controller





Feedback Controller



- Switching Controller
- Reset Controller





- Feedback Controller
- Switching Controller

$$\dot{x} = f_1(x)$$
  $\dot{x} = f_2(x)$ 
 $x_1 \vdash G(x)$ 

Reset Controller





- Feedback Controller
- Switching Controller
- Reset Controller

$$\dot{\mathbf{x}} = f_1(\mathbf{x})$$

$$\dot{\mathbf{x}}_1$$

$$\dot{\mathbf{x}}_2 = R(\mathbf{x}_1)$$

$$\dot{\mathbf{x}}_2 = f_2(\mathbf{x}_1)$$





- Feedback Controller
- Switching Controller
- Reset Controller

- Safety Properties
- Liveness Properties
- Linear Temporal Logic (LTL)
- Signal Temporal Logic (STL)
- ..





- Feedback Controller
- Switching Controller
- Reset Controller

### STL Property + Feedback Controller:

- V. Raman et al. "Model predictive control with signal temporal logic specifications." — MILP-based Method
- L. Lindemann et al. "Control barrier functions for signal temporal logic tasks" — Barrier Certificate based Method
- V. Raman et al. "Reactive synthesis from signal temporal logic specifications" —— CEGIS based Method
- C. Fan et al. "Signal temporal logic neural predictive control"
   NN based Method





- Feedback Controller
- Switching Controller
- Reset Controller

### STL Property + Feedback Controller:

- V. Raman et al. "Model predictive control with signal temporal logic specifications." — MILP-based Method
- L. Lindemann et al. "Control barrier functions for signal temporal logic tasks" — Barrier Certificate based Method
- V. Raman et al. "Reactive synthesis from signal temporal logic specifications" —— CEGIS based Method
- C. Fan et al. "Signal temporal logic neural predictive control"
   NN based Method

We considered switching controller synthesis of hybrid system, with respect to Signal Temporal Logic.



- 1. Keep liquid level in safe region (i.e.,  $0 \le h \le 4$ )
- 2. Reaction between liquid and Reactor Rod happens at reaction phase  $3 \le t \le 4$





- 1. Keep liquid level in safe region (i.e.,  $0 \le h \le 4$ )
- 2. Reaction between liquid and Reactor Rod happens at reaction phase  $3 \le t \le 4$

$$\varphi = (0 \le h \le 4)\mathcal{U}_{[3,4]}(3 \le h \le 5)$$





- 1. Keep liquid level in safe region (i.e.,  $0 \le h \le 4$ )
- 2. Reaction between liquid and Reactor Rod happens at reaction phase  $3 \leq t \leq 4$

$$\varphi = (0 \le h \le 4)\mathcal{U}_{[3,4]}(3 \le h \le 5)$$



STL

$$\varphi := \top \mid \mu \geq 0 \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathcal{U}_I \varphi_2$$



- 1. Keep liquid level in safe region (i.e.,  $0 \le h \le 4$ )
- 2. Reaction between liquid and Reactor Rod happens at reaction phase  $3 \leq t \leq 4$

$$\varphi = (0 \le h \le 4) \mathcal{U}_{[3,4]} (3 \le h \le 5)$$

STL

$$\varphi := \top \mid \mu \geq 0 \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathcal{U}_I \varphi_2$$

ST-RA

$$\phi := \top \mid \mu \ge 0 \mid \neg \phi \mid \phi_1 \lor \phi_2$$
  
$$\varphi := \varphi_1 \mathcal{U}_1 \varphi_2$$



- 1. Keep liquid level in safe region (i.e.,  $0 \le h \le 4$ )
- 2. Reaction between liquid and Reactor Rod happens at reaction phase  $3 \le t \le 4$

$$\varphi = (0 \le h \le 4)\mathcal{U}_{[3,4]}(3 \le h \le 5)$$

STL

$$\varphi := \top \mid \mu \geq 0 \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathcal{U}_I \varphi_2$$

ST-RA

$$\phi := \top \mid \mu \ge 0 \mid \neg \phi \mid \phi_1 \lor \phi_2$$
  
$$\varphi := \varphi_1 \mathcal{U}_1 \varphi_2$$

- No nested "until" operator.
- No negation outside "until" operator.



## Switched System

A switched system is defined as a tuple  $\Phi = (\textit{Q},\textit{F}, \mathtt{Init},\pi)$  , where

- $lackbox{ }Q riangleq \{ extit{ }q_1,q_2,\ldots,q_m extit{ }\} extit{ -Set of discrete modes,}$
- $F \triangleq \{f_q \mid q \in Q\}$  Set of vector fields,
- Init  $\subseteq \mathbb{R}^n$  Set of initial states,
- lacksquare  $\pi\colon \operatorname{Init} o (\mathbb{R}_{\geq 0} o extit{Q})$  Switching controller.



## Switched System

A switched system is defined as a tuple  $\Phi = (\textit{Q},\textit{F}, \mathtt{Init},\pi)$ , where

- $lacksquare Q riangleq \{ q_1, q_2, \ldots, q_m \}$  Set of discrete modes,
- $F \triangleq \{ f_q \mid q \in Q \}$  Set of vector fields,
- Init  $\subseteq \mathbb{R}^n$  Set of initial states,
- $\blacksquare$   $\pi \colon \operatorname{Init} o (\mathbb{R}_{\geq 0} o Q)$  Switching controller.

For any initial state x,  $\pi(x)$  specifies the control mode in which the system resides at time t



## Switched System

A switched system is defined as a tuple  $\Phi = (Q, F, Init, \pi)$ , where

- $\bigcirc \bigcirc \triangle \{ a_1, a_2, \dots, a_m \}$  Set of discrete modes,
- $\blacksquare$   $F \triangleq \{ f_q \mid q \in Q \}$  Set of vector fields,
- Init  $\subseteq \mathbb{R}^n$  Set of initial states,
- $\blacksquare$   $\pi$ : Init  $\to$  ( $\mathbb{R}_{\geq 0} \to Q$ ) -(Switching controller.)

For any initial state x,  $\pi(x)$  specifies the control mode in which the system resides at time t

Two Modes:

$$egin{aligned} q_1: \mathsf{P} & \mathsf{is} & \mathsf{ON} & & \dot{h} = 1, \ & q_2: \mathsf{P} & \mathsf{is} & \mathsf{OFF} & & \dot{h} = -1, \end{aligned}$$

Switching Controller:

$$\pi(h_0) = \begin{cases} (q_1, 0), & \text{if } 0 \le h_0 \le 1\\ (q_2, 0)(q_1, \frac{h_0 - 1}{2}), & \text{if } 1 < h_0 \le 4. \end{cases}$$





# State-Time Sets $X_q^i$

$$(x,\tau) \in X \stackrel{i}{q} \iff$$

The system, initiating from state x at time au in mode q, satisfies the STL specification within i switch occurrences.



## State-Time Sets $X_a^i$

$$(x,\tau) \in X \stackrel{i}{q} \iff$$

The system, initiating from state x at time  $\tau$  in mode q,

satisfies the STL specification within i switch occurrences.









# State-Time Sets $X_a^i$

$$(x,\tau) \in X \stackrel{i}{q} \iff$$

The system, initiating from state x at time  $\tau$  in mode q,

satisfies the STL specification within i switch occurrences.









## State-Time Sets $X_a^i$

$$(x,\tau) \in X \stackrel{i}{q} \iff$$

The system, initiating from state x at time  $\tau$  in mode q,

satisfies the STL specification within i switch occurrences.









## State-Time Sets $X_q^i$

$$(x,\tau) \in X \stackrel{i}{q} \iff$$

The system, initiating from state x at time au in mode q,

satisfies the STL specification within is witch occurrences.





- lacksquare  $\cup_{i\in\mathbb{N}}\cup_{q\in\mathcal{Q}}\mathcal{X}_q^i[t=0]$  is all the initial states that can be driven to satisfy the given STI formula.
- Switching controller can be extracted from the state-time sets.















00000



## Synthesizing Switching Controller

#### Theorem

For any  $q \in Q$ , suppose the solution of ODE  $\dot{\mathbf{x}}(t) = f_q(\mathbf{x}(t))$  with initial x at time  $\tau$  is denoted by  $\Psi(\cdot; \mathbf{x}, \tau, \mathbf{q})$ , then the state-time sets can be inductively represented by

$$\textit{X}_{\textit{q}}^0 = \text{QE}\left(\exists \delta \geq 0, \; \left(\phi_2[(\textit{\textbf{x}},\textit{\textbf{t}}) = (\Psi(\textit{\textbf{t}} + \delta;\textit{\textbf{x}},\textit{\textbf{t}},\textit{\textbf{q}}),\textit{\textbf{t}} + \delta)\right] \wedge (\textit{\textbf{t}} + \delta \in \textit{\textbf{I}})\right)$$

$$\wedge \left( \forall 0 \leq h \leq \delta, \ \phi_1[(\mathbf{x}, \mathbf{t}) = (\Psi(\mathbf{t} + \mathbf{h}; \mathbf{x}, \mathbf{t}, \mathbf{q}), \mathbf{t} + \mathbf{h})] \right) \right)$$

$$\mathbf{X}_{q}^{i} = \bigvee_{q' \neq q} \operatorname{QE} \left( \exists \delta \geq 0, \ \left( \mathbf{X}_{q'}^{i-1}[(\mathbf{x}, \mathbf{t}) = (\Psi(\mathbf{t} + \delta; \mathbf{x}, \mathbf{t}, \mathbf{q}), \mathbf{t} + \delta)] \right) \right)$$
 (2)

$$\wedge \left( \forall 0 \leq h \leq \delta, \, \phi_1[(\mathbf{x}, \mathbf{t}) = (\Psi(\mathbf{t} + \mathbf{h}; \mathbf{x}, \mathbf{t}, \mathbf{q}), \mathbf{t} + \mathbf{h})] \right) \right)$$

for any  $q \in Q$  and any  $i \in \mathbb{N}$ .



Concluding Remarks

## Synthesizing Switching Controller

#### Theorem

For any  $q \in Q$ , suppose the solution of ODE  $\dot{\mathbf{x}}(t) = f_q(\mathbf{x}(t))$  with initial x at time  $\tau$  is denoted by  $\Psi(\cdot; \mathbf{x}, \tau, q)$ , then the state-time sets can be inductively represented by

$$\mathbf{X}_{q}^{0} = \mathsf{QE}\left(\exists \delta \geq 0, \ \left(\phi_{2}[(\mathbf{x}, \mathbf{t}) = (\Psi(\mathbf{t} + \delta; \mathbf{x}, \mathbf{t}, \mathbf{q}), \mathbf{t} + \delta)\right] \land (\mathbf{t} + \delta \in \mathbf{I})\right) \tag{1}$$

$$\wedge \left( \forall 0 \leq h \leq \delta, \ \phi_1[(\mathbf{x}, \mathbf{t}) = (\Psi(\mathbf{t} + \mathbf{h}; \mathbf{x}, \mathbf{t}, \mathbf{q}), \mathbf{t} + \mathbf{h})] \right) \right)$$

$$\mathbf{X}_{q}^{i} = \bigvee_{q' \neq q} \text{QE}\left(\exists \delta \geq 0, \ \left(\mathbf{X}_{q'}^{i-1}[(\mathbf{x}, \mathbf{t}) = (\Psi(\mathbf{t} + \delta; \mathbf{x}, \mathbf{t}, \mathbf{q}), \mathbf{t} + \delta)]\right)\right) \tag{2}$$

$$\wedge \left( \forall 0 \leq h \leq \delta, \, \phi_1[(\mathbf{x}, \mathbf{t}) = (\Psi(\mathbf{t} + \mathbf{h}; \mathbf{x}, \mathbf{t}, \mathbf{q}), \mathbf{t} + \mathbf{h})] \right) \right)$$

for any  $q \in Q$  and any  $i \in \mathbb{N}$ .

- $\blacksquare$  For a Switched System with constant dynamics,  $X_q^i$  can be explicitly calculated in polynomial time
- For a Switched System with general dynamics, the explicit calculation of  $X_q^l$  is undecidable; however, it can be inner-approximated.



### Theoretical Guarantee

■ This method is sound:

$$\Phi = (\mathit{Q},\mathit{F},\mathtt{Init},\pi) \vDash \varphi$$



### Theoretical Guarantee

This method is sound:

$$\Phi = (\mathit{Q},\mathit{F},\mathtt{Init},\pi) \vDash arphi$$

This method is relatively complete for constant dynamics system :

For any  $x\in\mathbb{R}^n$ , if x can be driven to satisfy  $\varphi$  with some controller  $\pi$ , then there exists  $k\in\mathbb{N}$ , such that the initial set of the synthesized switched system contains x.



This method is sound:

$$\Phi = (\textit{Q},\textit{F},\mathtt{Init},\pi) \vDash \varphi$$

- This method is relatively complete for constant dynamics system :
  - For any  $x\in\mathbb{R}^n$ , if x can be driven to satisfy  $\varphi$  with some controller  $\pi$ , then there exists  $k\in\mathbb{N}$ , such that the initial set of the synthesized switched system contains x.
- The controller synthesized features minimal switching property for constant dynamics:

For any  $x_0 \in \text{Init}$ , there does not exists any controller  $\pi'$ , that can drive  $x_0$  to satisfy  $\varphi$  with switching time less than  $\pi(x_0)$ .



### Table 1: ST-RA Specifications

| Table 1: 51-RA Specifications |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Model                         | ST-RA Formulas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Reactor [55]                  | $\varphi : (10 \leq tempe \leq 90) \land (0 \leq cooling \leq 1) \mathcal{U}_{[15,20]} (40 \leq tempe \leq 50)$                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| WaterTank [33]                | $\begin{array}{l} \varphi_1: (10 \leq lev_0 \leq 95) \wedge (10 \leq lev_1 \leq 95) \wedge ( lev_0 - lev_1  \leq 10) \ \mathcal{U}_{[50,60]}(50 \leq lev_0 \leq 80) \\ \wedge (50 \leq lev_1 \leq 80) \\ \varphi_2: (10 \leq lev_0 \leq 95) \wedge (10 \leq lev_1 \leq 95) \wedge ( lev_0 - lev_1  \leq 10) \ \mathcal{U}_{[30,40]}(50 \leq lev_0 \leq 80) \\ \wedge (50 \leq lev_1 \leq 80) \end{array}$                                                                                                                                                   |  |  |  |  |  |
|                               | $\varphi_3: (10 \leq lev_0 \leq 95) \wedge (10 \leq lev_1 \leq 95)  \mathcal{U}_{[30,40]}(50 \leq lev_0 \leq 80)  \wedge  (50 \leq lev_1 \leq 80)$                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| CarSeq [5]                    | $\begin{split} \varphi_1: & (1 \leq pos_0 - pos_1 \leq 3)  \mathcal{U}_{[2,3]}(20 \leq pos_0 \leq 25) \\ \varphi_2: & (1 \leq pos_0 - pos_1 \leq 3) \wedge (1 \leq pos_1 - pos_2)  \mathcal{U}_{[2,3]} \left(20 \leq pos_0 \leq 25\right) \\ \varphi_3: & (1 \leq pos_0 - pos_1 \leq 3) \wedge (1 \leq pos_1 - pos_2 \leq 3) \wedge (1 \leq pos_2 - pos_3)  \mathcal{U}_{[2,3]} \\ & (20 \leq pos_0 \leq 25) \end{split}$                                                                                                                                   |  |  |  |  |  |
| Oscillator [52]               | $\varphi : (x^2 + y^2 \le 1)  \mathcal{U}_{[3,4]}(x^2 + y^2 \le 0.01)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Temperature [5]               | $ \begin{array}{l} \varphi_1: \wedge_{i=1,2,3}(23 \leq temp_i \leq 29)  \mathcal{U}_{[8,10]} \wedge_{i=1,2,3} \left(26 \leq temp_i \leq 28\right) \\ \varphi_2: \wedge_{i=1,2,3}(23 \leq temp_i \leq 29)  \mathcal{U}_{[8,10]} \wedge_{i=1,2,3} \left(26 \leq temp_i \leq 28\right) \wedge \left(temp_2 \leq temp_1\right) \\ \varphi_3: \wedge_{i=1,2,3}(23 \leq temp_i \leq 29)  \mathcal{U}_{[8,10]} \wedge_{i=1,2,3} \left(26 \leq temp_i \leq 28\right) \wedge \left(temp_2 \leq temp_1\right) \\ \wedge \left(temp_3 \leq temp_2\right) \end{array} $ |  |  |  |  |  |



## **Experimental Results**

Table 2: Empirical results on benchmark examples

| Model           | Dynamics | ST-RA       | Model Scale |            | Synthesis Time |          |
|-----------------|----------|-------------|-------------|------------|----------------|----------|
| Model           |          |             | $n_{dim}$   | $n_{mode}$ | #Iter.         | Time (s) |
| Reactor [55]    |          | φ           | 2           | 4          | 6 (fp)         | 0.31     |
|                 | Const    | $\varphi$   | 2           | 8          | 6  (fp)        | 4.14     |
|                 |          | $\varphi$   | 2           | 10         | 6  (fp)        | 8.01     |
| WaterTank [33]  |          | $\varphi_1$ | 2           | 7          | 9 (fp)         | 18.04    |
|                 | Const    | $\varphi_2$ | 2           | 7          | 6 (fp)         | 10.63    |
|                 |          | $\varphi_3$ | 2           | 7          | 6  (fp)        | 5.24     |
| CarSeq [5]      | Const    | $\varphi_1$ | 2           | 4          | 5 (fp)         | 1.12     |
|                 |          | $\varphi_2$ | 3           | 8          | 7 (fp)         | 47.41    |
|                 |          | $\varphi_3$ | 4           | 16         | 4              | 134.79   |
| Oscillator [52] |          | φ           | 2           | 3          | 6              | 77.20    |
|                 | Poly     | $\varphi$   | 2           | 4          | 6              | 106.09   |
|                 |          | $\varphi$   | 2           | 5          | 6              | 155.77   |
| Temperature [5] | Linear   | $\varphi_1$ | 3           | 8          | 5              | 236.99   |
|                 |          | $\varphi_2$ | 3           | 8          | 5              | 293.66   |
|                 |          | $\varphi_3$ | 3           | 8          | 5              | 252.32   |

Dynamics: the type of continuous dynamics; ST-RA: formulas to be satisfied (cf. Table 1);  $n_{dim}$ : dimension of state;  $n_{mode}$ : number of modes; #Iter.: number of iterations, (fp) means the synthesized set  $X_0^i$  (cf. Sect. 5) reach a fixpoint at current iteration.

- For constant dynamics system :
  - Efficiency  $\propto n_{dim}$ ,  $n_{mode}$ , and complexity of ST-RA formulas,
- For non-constant dynamics system :

Efficiency  $\propto n_{dim}$  and

n<sub>mode</sub>, Efficiency ★ complexity of ST-RA formulas



### Contribution:

- This work presents for the first time a method for generating hybrid system switching controllers under STL constraints and implements a prototype.
- The proposed algorithm in this work is theoretically guaranteed to be sound, relatively complete, and minimally switching.

⇒ Su, Feng, S. Zhan, N. Zhan: Switching Controller Synthesis for Hybrid Systems Against STL Formulas. FM '24.



### Contribution :

- This work presents for the first time a method for generating hybrid system switching controllers under STL constraints and implements a prototype.
- The proposed algorithm in this work is theoretically guaranteed to be sound, relatively complete, and minimally switching.

#### ■ Future Work :

- Enlarge the range of STL specification under consideration : nested STL formulas
- Generalize the hybrid system under consideration : stochastic, delay

⇒ Su, Feng, S. Zhan, N. Zhan: Switching Controller Synthesis for Hybrid Systems Against STL Formulas. FM'24.

